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The first �-selective chemical 5-thioglycosylation of a sec-
ondary alcohol was attained with the 2-deoxy-2-phthalimido-5-
thioglucose derivative. Requirements of the carbonyl functional
groups at C2 to exert anchimeric assistance are discussed on the
basis of the results with various functional groups.

5-Thiosugars, the ring sulfur analogs of monosaccharides,
are glycosidase resistant in their glycosidic forms.1 Therefore,
oligosaccharide analogs that have 5-thiosugars at their nonre-
ducing termini would have longer life time in organisms than
their natural counterparts. Durability is sometimes essential for
drug candidates and thus facile and stereoselective 5-thioglyco-
sylation could be a pivot in the development of oligosaccharide-
based drugs.

5-Thioglycosylations have been achieved both chemically
and enzymatically.1 While enzymatic procedures have afforded
both anomers according to the specificities of the glycosyltrans-
ferases, chemical methods have been generally �-selective re-
gardless of the sugar configurations with a few exceptions.2

We herein studied the glycosidation reactions of 5-thioglu-
cosamine derivatives for the first time. We selected 1-O-trichlo-
roacetimidate derivatives of three 5-thioglucosamine, i.e., acet-
amido (2), azido (6), and phthalimido (7) groups at C-2, as gly-
cosyl donors and 3-O-protected 1,6-anhydro-2-azido-2-deoxy-
�-D-glucopyranose 8 as a reactive secondary alcohol.

Peracetyl 5-thioglucosamine 13 was converted to the 1-O-
trichloroacetimidate (Im) derivative 2, which was subjected to
the glycosylation of 2-(trimethylsilyl)ethyl (SE) alcohol to give
the glycoside 3 with �-selectivity (�:� = 3:1) (Scheme 1). It
should be noted that the glycosidations of the ring oxygen coun-
terpart generally have given a significant amount of the oxazo-
line derivative aside from the desired glycoside.4 The different
reactivity toward oxazoline formation is discussed later.

The glycoside 3 was deacetylated with refluxing 1M NaOH
and treated with trifluoromethanesulfonyl azide (TfN3) and ace-
tic anhydride to give the azide derivative 4. The 2-(trimethylsi-
lyl)ethyl group of 4was removed with trifluoroacetic acid to give
the hemiacetal, which was converted into the 1-O-trichloroacet-
imidate derivative 6. The 2-amino group after deacetylation of
3 in the same way as above was converted into the phthalimide
(NPht) derivative 5. The same conversions as those for 6 led to
the 1-O-trichloroacetimidate derivative 7.

Three 5-thioglucosaminyl donors 2, 6, and 7 were reacted
with 1,6-anhydrosugar 8. This glycosyl acceptor is one of the
most reactive secondary alcohols, which we have used as a first
choice in testing 5-thioglycosylations.1a The acetamide 2 gave
�-disaccharide 9� and the oxazoline derivative 13 (39%), but
no �-disaccharide (Scheme 2). The formation of 13 was un-
avoidable under the other conditions: trimethylsilyl triflate
(TMSOTf) as a Lewis acid or acetonitrile as a solvent. The sig-
nificant glycoside formation is notable, since the glycosylation
of secondary alcohols with the ring oxygen counterpart is al-
most hopeless.4 The glycosidation with the azide derivative 6
also afforded �-selectivity to mainly give disaccharide 10�
with a small amount of �-disaccharide 10�. The use of
TMSOTf in CH3CN predominantly gave the glycosylacetamide
12 (25%). A striking result was obtained, when the phthalimide
derivative 7 was used as a donor and only the �-disaccharide
11� was produced.5 This is the first chemical 5-thioglycosyla-
tion of a secondary alcohol where a predominant �-selectivity
was obtained.

The difference in the stereoselectivity of the glycosidation
reactions of acetamide (2) and phthalimide (7) derivatives is re-
markable and deserves further discussion. First of all, we focus
on the retarded oxazoline formation from acetamide derivative
2 in comparison with the ring oxygen counterpart, since this is
presumably related to anchimeric assistance. The coupling con-
stants of the oxazoline 13 (J1;2 1.2, J2;3 5.3, J3;4 5.3, J4;5 9.9Hz)
are consistent with an envelop conformation (E5), which is
slightly different from the skew boat conformation (0S2) report-SAcO
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ed for the ring oxygen counterpart.6 E5 conformation is a transi-
tion structure between 4C1 and 0S2 (Figure 1) and has about
25 kJ/mol higher heat of formation than 0S2 in regard to cyclo-
hexane.7 As the ring sulfur atom is larger and more protruded out
of the ring plane than the ring oxygen atom,1c there may be re-
pulsion between the ring sulfur atom and O3 in 0S2 conforma-
tion. Therefore, it is most probable that a higher energy is neces-
sary for the oxazoline formation reaction of 5-thioglucosamine
derivative than that of the ring oxygen counterpart owing to
the conformational restriction from the ring sulfur atom. The
same explanation is applicable to the absence of anchimeric as-
sistance in the glycosidation of 2.

We next turned our attention to �-selective glycosidation
with phthalimide derivative 9, which is ordinary for the ring oxy-
gen counterparts and either electronic participation as with acet-
amido groups or the steric hindrance at the �-face have been sus-
pected for the origin of the stereoselectivity. If the steric hin-
drance alone is responsible, then �-selectivity should be ob-
tained for 5-thiosugar donors with bulky 2-O-acyl groups.
Indeed, Ohara and co-workers succeeded in the �-selective 5-
thioglucosylation of primary alcohols with 2-O-pivaloyl- and
2-O-benzoyl-5-thioglucose derivatives.2 However, when we
conducted the glycosidation for the secondary alcohol 8 with
the same glycosyl donors, 14 and 15, we obtained only �-glyco-
sides, 16 and 17 (Scheme 3). Therefore it is unlikely that the
bulkiness of the phthalimido group alone is responsible for the
�-selectivity.

Overall, the ability to form the oxazolinium ions 22 and 23 is
a key to the different stereoselectivities in the glycosidation re-
action of 5-thioglucosamine donors (Scheme 4). The fast conver-
sion of the acetamido-derived oxazolinium ion 22 to the less re-
active oxazoline derivative 13 is likely to repress the reaction of
22 with the nucleophile. On the other hand, the reaction from the
phthalimido-derived oxazolinium ion 23 to glycoside 11 is
straightforward without oxazoline formation. We thus suggest
that fast formation of the oxazolinium ion 23 from the phthal-
imide glycosyl cation 21 led to the absolute �-selectivity. The
exclusive �-glycoside formation from acetamide glycosyl cation
20 is most likely due to kinetic anomeric effect as often dis-
cussed for �-selective 5-thioglucosylations.1 Relatively slow
formation of the oxazolinium ion 22 might have helped the ex-
traordinary glycosylation of a secondary alcohol in contrast to
the ring oxygen counterparts. The origin of difference in the abil-

ity to form oxazolinium ions from glycosyl cations 20 and 21 is
unclear and we need to collect further information to elucidate
the mechanism.
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Figure 1. A proposed mechanism for the different oxazonline formation
reactivities of N-acetylglycosamines.
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